If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X2+X2=192
We move all terms to the left:
X2+X2-(192)=0
We add all the numbers together, and all the variables
2X^2-192=0
a = 2; b = 0; c = -192;
Δ = b2-4ac
Δ = 02-4·2·(-192)
Δ = 1536
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1536}=\sqrt{256*6}=\sqrt{256}*\sqrt{6}=16\sqrt{6}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{6}}{2*2}=\frac{0-16\sqrt{6}}{4} =-\frac{16\sqrt{6}}{4} =-4\sqrt{6} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{6}}{2*2}=\frac{0+16\sqrt{6}}{4} =\frac{16\sqrt{6}}{4} =4\sqrt{6} $
| 365x-12=28 | | -7–3x=x–3 | | 34g=102 | | 34h=17 | | 4(4x+4)-5=27 | | 8^(2x+2)=2^(3x) | | 5x-14=4x-10 | | 2x-15=-3x-20 | | 9x+1=2x-20 | | 7x-7=x-49 | | 8x-16=x-2 | | x*4+34=90 | | x+4=-3x-8 | | (X^2+-2x+1)+-4=0 | | (X2+-2x+1)+-4=0 | | 5x+13=4(2x+3)-5 | | 4(2x-1)+2=4x+38 | | Y=12x+145 | | -x-2=5(2x+4) | | 5(3x+3)=-30 | | 8x-6=x-27 | | 8m=8+72 | | 8m+8=32 | | -2x+12=5(4x-2) | | -5x+35=80 | | -5x+15=5(x-5) | | 2(5x+2)=-46 | | -44=2(2x-2) | | -20=5(x+2) | | -3x+43=2(2x-3) | | 5(3x+4)+4=-2x+41 | | 5x+5=0x+25 |