If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X2+X2=23
We move all terms to the left:
X2+X2-(23)=0
We add all the numbers together, and all the variables
2X^2-23=0
a = 2; b = 0; c = -23;
Δ = b2-4ac
Δ = 02-4·2·(-23)
Δ = 184
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{184}=\sqrt{4*46}=\sqrt{4}*\sqrt{46}=2\sqrt{46}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{46}}{2*2}=\frac{0-2\sqrt{46}}{4} =-\frac{2\sqrt{46}}{4} =-\frac{\sqrt{46}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{46}}{2*2}=\frac{0+2\sqrt{46}}{4} =\frac{2\sqrt{46}}{4} =\frac{\sqrt{46}}{2} $
| 3a-5a=-1 | | -45r+1,547=297r+369 | | 2+9x=-14x+x | | (8n-8)÷5=(3n-4)÷2 | | g/4=3 | | -24=2x+4 | | 22x=108 | | -3x-8=11 | | 9n+68=2(2n-2) | | n/8+3=11 | | 14x+22=6x+174 | | .x^2+6-4=0 | | 180=0.5x+119 | | 180=1/2x+119 | | 119+.5x=180 | | 0=2(x-5)(2x-3) | | 4+64x=39x+8 | | 5x-20=25x-90 | | 2(4x-5)=11 | | z/5-5=31/2 | | x-8+15=12 | | 3(x+6/2)=x-3 | | y/10+3=-10 | | 2x-69=3x-85 | | 11×z=121 | | 910t=18 | | 3+4v=12 | | 2x+1=(5-8) | | 15x+15=125 | | 10x-12=3x+3 | | t^2+t=-10 | | 15+15x=125 |