If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X2+X2=256
We move all terms to the left:
X2+X2-(256)=0
We add all the numbers together, and all the variables
2X^2-256=0
a = 2; b = 0; c = -256;
Δ = b2-4ac
Δ = 02-4·2·(-256)
Δ = 2048
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2048}=\sqrt{1024*2}=\sqrt{1024}*\sqrt{2}=32\sqrt{2}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-32\sqrt{2}}{2*2}=\frac{0-32\sqrt{2}}{4} =-\frac{32\sqrt{2}}{4} =-8\sqrt{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+32\sqrt{2}}{2*2}=\frac{0+32\sqrt{2}}{4} =\frac{32\sqrt{2}}{4} =8\sqrt{2} $
| 1/9h-3=20 | | 4/5•u=-12 | | 5=j+11/4 | | 6y+18=84 | | 3j+4=28 | | 5x+4=4+4x | | 8(3n-3)+5=149 | | (4p÷4)-(2p÷3)=10 | | 4^2x=50 | | 67.9=7(m+2.3) | | 16c−8c=16 | | 1=x/5-15 | | 7x+14+3=5x | | 0.2/x=10 | | 10-7b=-5b | | 4f^2+13f–12=0 | | -10s=6s+8 | | 6h+4+1=10h-7 | | x-8=0.5x | | 7+10s=9s+8 | | -10+8z=10z | | -8-6r=7-3r | | k^2+25k+24=0 | | 3m-7=10m | | 13,5x=110,7 | | y=20(2) | | -8d+2=-7d | | −3(−5x+2)+x−3=39 | | w=-w+8 | | w=-w | | 60=(3x-16)+(4x-8) | | 2d-4=9 |