If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X2+X2=29
We move all terms to the left:
X2+X2-(29)=0
We add all the numbers together, and all the variables
2X^2-29=0
a = 2; b = 0; c = -29;
Δ = b2-4ac
Δ = 02-4·2·(-29)
Δ = 232
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{232}=\sqrt{4*58}=\sqrt{4}*\sqrt{58}=2\sqrt{58}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{58}}{2*2}=\frac{0-2\sqrt{58}}{4} =-\frac{2\sqrt{58}}{4} =-\frac{\sqrt{58}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{58}}{2*2}=\frac{0+2\sqrt{58}}{4} =\frac{2\sqrt{58}}{4} =\frac{\sqrt{58}}{2} $
| 20=(2x-4)*2 | | x^2+30x=840 | | 3p-8=2p-2.5 | | 2x(2x+2)x=154 | | 2xx4x+4=154 | | 5(y+8)+3(y+1)=0 | | 0.05x=0.02 | | (4x+1)-3(x-4)=(x+5)(x-5)-2 | | 2x^2-3x-648=0 | | x-x/6=10 | | 2(x+3)+5=2x+23 | | 6x-1=15x-41 | | 15x+9x=45 | | 12=k0.2 | | (8-9i)/(4-3i)=0 | | x+x+2/x=20 | | 2(y-2)+(y-7)=0 | | 30-x=70-4x | | 1x+30=5 | | 5(4x+1=65 | | 3(6x+4=138 | | 3t+2=9 | | 3c-7=4 | | 8x-11=2x+19(4,5,6,7) | | X*5=64+x | | 3+4b=12 | | (-2x+6)(x+2)=0 | | 21+5n=43+4n | | 7-4n=53+3n | | 4/x=x/15 | | 6×-y-4=0 | | 3.5/x=4/x |