If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X2+X2=49
We move all terms to the left:
X2+X2-(49)=0
We add all the numbers together, and all the variables
2X^2-49=0
a = 2; b = 0; c = -49;
Δ = b2-4ac
Δ = 02-4·2·(-49)
Δ = 392
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{392}=\sqrt{196*2}=\sqrt{196}*\sqrt{2}=14\sqrt{2}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-14\sqrt{2}}{2*2}=\frac{0-14\sqrt{2}}{4} =-\frac{14\sqrt{2}}{4} =-\frac{7\sqrt{2}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+14\sqrt{2}}{2*2}=\frac{0+14\sqrt{2}}{4} =\frac{14\sqrt{2}}{4} =\frac{7\sqrt{2}}{2} $
| 5x-3/x=0 | | −4x+6(6−2x)=−7x−36 | | 5x-2(x-3)=-4+5x-4 | | (7x+7)=(16x+4) | | y^2=16-10^2y-13 | | v/2-3=5+v/2 | | 8=8p+13–3p | | -15x+14x+12=-10x+16 | | 4x^+1=17 | | y^2=16-10^2y | | 8/9x+1=4 | | (65-2x)=(81-3x) | | -4(4x+4)+(17x-8)=0 | | 2-4x+7=3+2x+2 | | H=t×t+3t+10 | | x^+12=1 | | -6y+17=3(y-31/3) | | 12n^2-19n-30=0 | | -19x+15=-2x-18 | | 10x^2+13x-23=0 | | 1.12=1.2g=8.62 | | A=4A(8x-2B) | | 3x+7=-5(4x-6) | | x^+8=57 | | x-21/4=1/18 | | 5-x=13/4 | | 2/3x=56 | | 3x^=63 | | (x+28)=(2x+16) | | 5-x=1.75 | | 4b+24=3b-6 | | x-7/10=5/6 |