If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X2+X2=52
We move all terms to the left:
X2+X2-(52)=0
We add all the numbers together, and all the variables
2X^2-52=0
a = 2; b = 0; c = -52;
Δ = b2-4ac
Δ = 02-4·2·(-52)
Δ = 416
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{416}=\sqrt{16*26}=\sqrt{16}*\sqrt{26}=4\sqrt{26}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{26}}{2*2}=\frac{0-4\sqrt{26}}{4} =-\frac{4\sqrt{26}}{4} =-\sqrt{26} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{26}}{2*2}=\frac{0+4\sqrt{26}}{4} =\frac{4\sqrt{26}}{4} =\sqrt{26} $
| 21-6u=27-8u | | r−11=7 | | m4= 3.5 | | 4u-16=-5(u-5) | | 4u-16=-5(u-9) | | 7+6x+10=9x-26 | | (6•z)+4=40 | | (14-5i)^2=171-140i | | 15=-5(-4+r) | | 4b-30=10 | | -3v+v+5=-3v+5 | | 10x-2x+72-12x=180 | | -3=-4n-6+4n+3 | | -x+4+3x=-8+2x+4 | | 2m-5+3=-6m+2+8m | | 2x+5×+6-1=19 | | C^2+14x=-7 | | 2x+6×+6-1=10 | | 29x-29=29x−11 | | 3(z+3=7+3z+6-z | | -18=(p-8)6 | | 2x=53X= | | 1+x+4/3=4x+7/9+7-x/x-3 | | 5(z+6)=6+z( | | 34=-17(-6+z) | | -5x+12=-5x-5 | | 5b+b/6=b/3-116/6 | | -5x+12=-12+-12 | | 6(w-5)=-72 | | -8+16=m-1 | | 14+7m-14=42-14 | | -8(m+6)=-72 |