If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X2+X2=89
We move all terms to the left:
X2+X2-(89)=0
We add all the numbers together, and all the variables
2X^2-89=0
a = 2; b = 0; c = -89;
Δ = b2-4ac
Δ = 02-4·2·(-89)
Δ = 712
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{712}=\sqrt{4*178}=\sqrt{4}*\sqrt{178}=2\sqrt{178}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{178}}{2*2}=\frac{0-2\sqrt{178}}{4} =-\frac{2\sqrt{178}}{4} =-\frac{\sqrt{178}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{178}}{2*2}=\frac{0+2\sqrt{178}}{4} =\frac{2\sqrt{178}}{4} =\frac{\sqrt{178}}{2} $
| 5w-3-2w(3w-4)=4 | | 5w-3-2w(3w-4=4 | | 9x+6x=66+27 | | x×(x-20)=90 | | 1.8=a+0.7 | | 8x-14=7x+11 | | 14+5+3=n | | -1/2=6/5u-1/3 | | (2x+3x)=62 | | -.14x=9 | | 10x+2x+5=8x+x+7 | | 3d-4=23 | | 9x-54=240 | | 7x-14=7x+11 | | 9x-54=340 | | 56-1/7x=65 | | 6x-7=5x=3 | | 37-7n=4(-5n-7) | | x+12+100+x=90 | | y=35000(1-0.05)^5 | | n-10=1 | | x+243=316 | | x/2-13=-5 | | (x+5)^2=-13 | | 5-6n=29 | | 6(x–4)=36 | | 4.3-1.4(p+7)=-9.5 | | 6n-5=29 | | 5-14=x+10 | | 3x−5=7 | | 6=4-k/4 | | 1/2x+1/4=5(4/5x−4) |