If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X2+X2=900
We move all terms to the left:
X2+X2-(900)=0
We add all the numbers together, and all the variables
2X^2-900=0
a = 2; b = 0; c = -900;
Δ = b2-4ac
Δ = 02-4·2·(-900)
Δ = 7200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{7200}=\sqrt{3600*2}=\sqrt{3600}*\sqrt{2}=60\sqrt{2}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-60\sqrt{2}}{2*2}=\frac{0-60\sqrt{2}}{4} =-\frac{60\sqrt{2}}{4} =-15\sqrt{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+60\sqrt{2}}{2*2}=\frac{0+60\sqrt{2}}{4} =\frac{60\sqrt{2}}{4} =15\sqrt{2} $
| 2/3m-1/2=3/7 | | 7x-17=3x+7 | | 5(2x=3+8)= | | 8x+7-2×+5=4×+12-(×-30) | | -2x-7x=63 | | ?=18x2 | | 4(6x-5)=24x-20 | | 4/7x+1/2=-1/4 | | 4/7x+1/2=-4 | | 3(m+2)-5(m+3)=1 | | 6-(1/6)x=(9/2) | | 10x-12=2(3x+4) | | 99(33x+99)+(x+33)=14 | | (9/2)x+(2/3)=(5/3)+(3x/5) | | -15=-3(a+6) | | 2x2=8-6x | | 120*14*x*91=1330056 | | (n-1)=-2(3+n) | | 2(2x-1)+4x=4x-2+4x=8x-2 | | 9x^2=5-x | | x+18=60 | | u^2–3u–4=0 | | 0=4m^2-21m-18 | | m=4m^2-21m-18 | | (7y+5)/3=7 | | 100/3=4300/x | | 100/3=x/4300 | | 12c+3c-12c=9 | | (7y+5)/3=(8+6)/2 | | 6y-y-y=16 | | 7g-4g+2g+g=6 | | 5(x+4)=3(2x+7) |