If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X2+X=0
We add all the numbers together, and all the variables
X^2+X=0
a = 1; b = 1; c = 0;
Δ = b2-4ac
Δ = 12-4·1·0
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1}=1$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-1}{2*1}=\frac{-2}{2} =-1 $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+1}{2*1}=\frac{0}{2} =0 $
| 12=r3+9 | | 4(4s+4)=192 | | 5(n-6)=21 | | | | +5x-(x-2)²-3(2x+5)=+4(x-1)-(x+1)+5 | | H²+5h+4=0 | | 3(7x-3)=-27 | | 5x+2x+-24=180 | | 2x+-2=48 | | 2x-7=5x-17 | | 5x+1200=30x+500 | | 5=x^2/(3000-60x) | | 15=1.5+n | | 8x2-10x+33=0 | | (9x-4)/4=3x+1 | | 3b=—30=-3 | | 7x2−90x−112=0. | | -32x-7+4x=15 | | x=-1/2-1 | | 5/8y-19=41 | | 22z-3=57 | | 120-11=4n-11 | | ⅓(d+9)=-12 | | 120=4n-11 | | +x-3(x+1)=+5x-4(x-1) | | 15=4n-11 | | 2x+x−2x+5x=18 | | 120=10n+5 | | 10n+5=15 | | 2t+t−2t+5t=18 | | x=7-39/6 | | X(15x-8)=0 |