If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X2-10X=39
We move all terms to the left:
X2-10X-(39)=0
We add all the numbers together, and all the variables
X^2-10X-39=0
a = 1; b = -10; c = -39;
Δ = b2-4ac
Δ = -102-4·1·(-39)
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{256}=16$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-16}{2*1}=\frac{-6}{2} =-3 $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+16}{2*1}=\frac{26}{2} =13 $
| 2(x-3)-5(x-1)=1/2 | | 3x+24=36;x | | 11=n-8 | | X2-7x=44 | | X^2y+(y)^2=0 | | 1(v-45)=2(v-68) | | 2x•(x+5)-x^2+7=x^2-(3x-5/3) | | 2x•(x+5)-x^2+7=x^2-(3x-5/3 | | 6x−4=−(32x−2) | | 0.75=0.41+0.5x | | (V-45)=2(v-68) | | (3x+12)+(2x+23)+(180-(6x+18))=180 | | 3.p-3.7=2.4 | | 3x5=2x+12= | | V-45=2(v-68) | | 26−8x=−(7−35x) | | 2k+5-3=10 | | -5g-105=7g+6 | | 81+4=3x-26 | | MO=7x-4 | | 3(6m-4)=4(1+5m) | | 70+w=8w | | x+3x+5+2(3x+5)+25=180 | | 3.14+0.35x=385.40 | | 1/3a-8=12 | | 1/7n=24 | | W+70=8w | | W+70=(4w)2 | | x-2.55=1.35 | | 180-((3x+9)+(3x+16))=x | | 7x+5x-3=8x+4x-1 | | -34=y/2 |