If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X2-14X+31=63
We move all terms to the left:
X2-14X+31-(63)=0
We add all the numbers together, and all the variables
X^2-14X-32=0
a = 1; b = -14; c = -32;
Δ = b2-4ac
Δ = -142-4·1·(-32)
Δ = 324
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{324}=18$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-18}{2*1}=\frac{-4}{2} =-2 $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+18}{2*1}=\frac{32}{2} =16 $
| 3+8x=-32x+x | | 15x^2-26x+5=0 | | 3+8x=32x+x | | 2x-1=11x-73# | | 1/5x+8=11 | | 60-9z=5z-10 | | 32-5x=8=8-9 | | 5x+1=8x-48 | | 32-5x=8=-109-7x | | 5+x=12+x | | 12x/3x=4 | | 15t-12=-42 | | 17-2x=-4(x+2)+1 | | Y=4e(3X^3-X) | | (78-31+33)x4/8=N | | Nx2-25+25+4=15 | | 2x+108=0 | | 1331n=14641 | | 24y-620=y-195/3 | | 82+84/6-4x4=N | | 150+5+75-3x15=N | | 24y-195=y-620/3 | | 4x5=25- | | 428=6x | | n5=32768 | | 10x+4=40x-24 | | 5x+25=50x-33 | | 6(5x-2+12=30 | | x3+15x2+150x-245=0 | | (x+1)/2x=10 | | 7x=51-2 | | x/9+4=-1 |