If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X2-14X-16=0
We add all the numbers together, and all the variables
X^2-14X-16=0
a = 1; b = -14; c = -16;
Δ = b2-4ac
Δ = -142-4·1·(-16)
Δ = 260
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{260}=\sqrt{4*65}=\sqrt{4}*\sqrt{65}=2\sqrt{65}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-2\sqrt{65}}{2*1}=\frac{14-2\sqrt{65}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+2\sqrt{65}}{2*1}=\frac{14+2\sqrt{65}}{2} $
| m-1=68 | | 11x+9-7=2 | | w-27=69 | | 83-12x^2=0 | | 5x/10=-10 | | z-4=63 | | h-36=24 | | 87=r+4 | | 7x=92x-6 | | 3/8h=6 | | -9-8(1=6x)-1 | | f+21=51 | | X/2x+7=61 | | 3x-‘+9=2x-10 | | 4(2y+2)-13=2(5y-4)+15 | | -2+3x+5x-6=8 | | (4x+12)=122 | | 12-b/2=7 | | b+20=9 | | 2x-10=7=2-2x=-3 | | 16+p/2=20 | | (-7+4x)+65=90 | | (-7+4x)=155 | | 5x2-20=6x+12 | | 2x-10=7=2-2x=3 | | (5x+15)=75 | | 4x=644x=64 | | 1/4(8x20)=11 | | (2x+18)=(3x+2) | | 6x+20=21x-40 | | (7x+11)=60 | | (2x+28)=80 |