If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X2-16X+58=0
We add all the numbers together, and all the variables
X^2-16X+58=0
a = 1; b = -16; c = +58;
Δ = b2-4ac
Δ = -162-4·1·58
Δ = 24
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{24}=\sqrt{4*6}=\sqrt{4}*\sqrt{6}=2\sqrt{6}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-2\sqrt{6}}{2*1}=\frac{16-2\sqrt{6}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+2\sqrt{6}}{2*1}=\frac{16+2\sqrt{6}}{2} $
| 1(x+2)=11 | | 18j+3j-19j-2j+j=7 | | 18j+3j-19j-2j=7 | | 459+p=513 | | g-g+g=2 | | 3y-y+4y+2y=8 | | -3h=-3h+5 | | 5s-18=5 | | 8c-7c=32 | | 3(-2)=7x+1 | | 7q-4q=18 | | 3(m+4)+m=24 | | 6x2+13x-5=0 | | 1.2=z/1 | | t+t=6 | | 3g-g=10 | | −27=x-15 | | 4x+33=8x+9 | | 267=40n+20+7 | | −27=x−15 | | 3(5k-1)=27 | | x+24=61 | | 2(-6x+5)=4x+2(1-6x) | | 1/5x+2/x=-4 | | 3v+2-v=6 | | 8(h+3)=56 | | -40t=280 | | 6=4-2n | | -5(2y+7)=5 | | 1/5x+2x=-4 | | 40t=280 | | 1/2x+18=28 |