If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X2-19X+36=0
We add all the numbers together, and all the variables
X^2-19X+36=0
a = 1; b = -19; c = +36;
Δ = b2-4ac
Δ = -192-4·1·36
Δ = 217
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-19)-\sqrt{217}}{2*1}=\frac{19-\sqrt{217}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-19)+\sqrt{217}}{2*1}=\frac{19+\sqrt{217}}{2} $
| D=28/c | | Y=-6x^2-24x-24 | | 4(x+1)-3(2x+6=-11 | | 2(3x+5)+4x=x | | s/6=2 | | 5x+4-4x=11 | | 2x+17=2x+7 | | 18.7=x-2.6 | | 2/x-2=4 | | 16x^2-16x+4-4(4x-2)+3=0 | | 2y+17=2y+7 | | -14=-2(5-x) | | 2(3x+5)+4x=x+8(x+5)+14 | | -6x+10=-4x-26 | | 2x-4=66-5x | | 3(×+2)=y-6 | | 87=3(6n+5) | | -8=2h-14 | | 4j/6=2 | | 300=20b | | A=(33x20)1/2 | | 25-4y=25 | | -4+5v=-29 | | 48+6w+8w=208 | | 670=-26+-20s | | 5x^2=40x-80 | | 3+b/4=-6 | | 7x+5=-5x+3 | | 2(x-6)+2x=28 | | P=2x+4(5/6x) | | t-18=7 | | 3846.5=3.14r2 |