If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X2-20X+51=0
We add all the numbers together, and all the variables
X^2-20X+51=0
a = 1; b = -20; c = +51;
Δ = b2-4ac
Δ = -202-4·1·51
Δ = 196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{196}=14$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-14}{2*1}=\frac{6}{2} =3 $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+14}{2*1}=\frac{34}{2} =17 $
| 4f=160 | | 3(x3)+12=4x-2 | | 75−n=60 | | 24+9t=78 | | (6x+10)=140 | | -5+3y=22 | | 8b+21=4b-3 | | p/28=2 | | 115=196-w | | p2− 8=2 | | 3-2(5+4x)=17 | | 5x^2+6.4x=100 | | 18+7v=32 | | —2(—x+4)+4x—3=31 | | 1/3(2x-27)=-9+ | | 310=−6.2a | | -v+67=176 | | -1(n+4)=12 | | 6=s/2=19 | | -m*m*m+3m-2=0 | | 37.2x=x+1 | | x°=180°-47°-43° | | 2/n=5/n-3 | | 10/c=5 | | x°=180°-47°-43°= | | 3(3c+16)=3c+12 | | -3=m+1/3 | | 2(2-n=)34 | | 4=m+14 | | (10/c)=5 | | 3(2j+6)=2(3j+ | | -5=+20+x |