If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X2-20X-320=0
We add all the numbers together, and all the variables
X^2-20X-320=0
a = 1; b = -20; c = -320;
Δ = b2-4ac
Δ = -202-4·1·(-320)
Δ = 1680
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1680}=\sqrt{16*105}=\sqrt{16}*\sqrt{105}=4\sqrt{105}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-4\sqrt{105}}{2*1}=\frac{20-4\sqrt{105}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+4\sqrt{105}}{2*1}=\frac{20+4\sqrt{105}}{2} $
| 7b-5b=52 | | -2x2+12x+15=-3x2+4x | | 32+x•5-29=43 | | w−3−2=4 | | Y=-3x+4=10 | | x-12.34=20 | | -5f=-120 | | x+9-6=10 | | m-4/15=3/5 | | (2x-50)+(1/2+15)=45 | | (2x-50)+(1/2+15)=90 | | (2x-50)+(1/2+15)=180 | | |4x+1|=3x | | -3y+8+5y=-10 | | 3y+8+5y=-10 | | 14+3s−5=–15−s | | 4(a+3)=56 | | 0.8(x+16)=36 | | 6.2+y/4=-6.6 | | X-2y=8;(-6,-7) | | 30x=120/5 | | 25+6+7x=-93 | | 10x+30x=10x | | -8z+5=-51 | | -8z+5=51 | | -8(s-4)=-48 | | 6x-3x-1=17 | | 3x+13=5x+23 | | 90/80=x/75 | | 7x=278 | | 2^(2x)-2^(x+1)-8=0 | | 4x^2+100x+49=0 |