If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X2-24X+23=0
We add all the numbers together, and all the variables
X^2-24X+23=0
a = 1; b = -24; c = +23;
Δ = b2-4ac
Δ = -242-4·1·23
Δ = 484
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{484}=22$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-22}{2*1}=\frac{2}{2} =1 $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+22}{2*1}=\frac{46}{2} =23 $
| 7(2+3x)=-175 | | 10x+1=4+3x | | -4(w-16)=-4 | | -4(w-16)=- | | -5x=2x-70 | | -5(2+6x)=-160 | | -45+2x=-3x | | 7(-7x-5)=455 | | 8x-2x=-10x | | 8(y-6)=9y | | 5(7x+6)=450 | | -10x+x=-90 | | 5(-1+2x)=-75 | | 2(x−3)2+4=42 | | 20/14=2-(x/7) | | (20/14)=2-(x/7) | | -p-2=-6 | | 46-12g=5 | | 1/2(10x+6)-2(5x+3)=4(2x-3) | | -2(5x+3)=54 | | 49-12g=5 | | X(2)-5=(x-1)(3)+4 | | 0=-4t^2+30.5t+9.6 | | 8y/8y+8+9y+1/2y+2=9y+4/y+1 | | 5=18x | | X(2)-4=|x| | | -14=6c-13c | | 0=1x^2-6x+9 | | -2a=3-7a | | 5=2×9x | | 3(-5x-1)=-78 | | 4=|x-2| |