If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X2-40X=1500
We move all terms to the left:
X2-40X-(1500)=0
We add all the numbers together, and all the variables
X^2-40X-1500=0
a = 1; b = -40; c = -1500;
Δ = b2-4ac
Δ = -402-4·1·(-1500)
Δ = 7600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{7600}=\sqrt{400*19}=\sqrt{400}*\sqrt{19}=20\sqrt{19}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-40)-20\sqrt{19}}{2*1}=\frac{40-20\sqrt{19}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-40)+20\sqrt{19}}{2*1}=\frac{40+20\sqrt{19}}{2} $
| -204+8.2y-8.2y=-204 | | -204+8.2-8.2y=-204 | | 4x-2Y+60=180 | | 8(x-2)+4=-4(x-8) | | 4x+9=3(x+1)-4 | | -3y+(1y+9)=9+4(-8-y) | | 7(x+6)+3=-11(x-7)-6 | | -3(x-8)+8=3(x-7) | | 4x-17/9x-2=1/1/4 | | 9x/7+6x=12/3 | | (X+27)+(2x+10)+(2x-20)+2x=360 | | 3(x-4)+3x=24 | | 3e+6=5e | | 6y-10+163=180 | | 3(x)=2x+3 | | 2x^2+30x-126=0 | | 3x-15=6x-+15/ | | 6x+1/2=7x-3-1/3 | | 900+x=100 | | 4n+13=17 | | a4=9.1 | | 3x+8=5x-6=2x+15 | | 2x^2+36x-56=360 | | 7x+47+x^2-92+10+1+9x-1+3x+48+163-3x+51+20x-x^2+2x^2-327=360 | | 5.9w=28.32 | | 50+10x0+7+2=5-+-+7+2 | | 135=2.5x+80 | | -X^2+8x^2-16x=0 | | 0=(0.4-x)(0.4-x) | | 7y=2(17-3) | | 2x-(1+3-1)=12 | | Y=5x-6.3x^2 |