If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X2-4X^2+64=0
We add all the numbers together, and all the variables
-3X^2+64=0
a = -3; b = 0; c = +64;
Δ = b2-4ac
Δ = 02-4·(-3)·64
Δ = 768
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{768}=\sqrt{256*3}=\sqrt{256}*\sqrt{3}=16\sqrt{3}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{3}}{2*-3}=\frac{0-16\sqrt{3}}{-6} =-\frac{16\sqrt{3}}{-6} =-\frac{8\sqrt{3}}{-3} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{3}}{2*-3}=\frac{0+16\sqrt{3}}{-6} =\frac{16\sqrt{3}}{-6} =\frac{8\sqrt{3}}{-3} $
| (2w+3)4=60 | | 4z-22=30 | | 2(m-3)+4=3(m-2)+2m-2 | | p+8/9=4 | | p+89=4 | | 4+2d=14 | | 5/4=126=x | | 9v-639=-2 | | n/7-18=46 | | t3+ 8=12 | | –7z+7=–8−2z | | 2b=3b-6 | | -5w=-4w+6 | | 16.60=5x+2.60 | | 16=z4+12 | | 4+y=4-22 | | 4+y=4-23 | | r/4-14=22 | | r*4-14=22 | | 10+2=4-x | | 10+x–8=22 | | 3/8x-5/10=-4/10 | | b+1/7=b | | 21/14=x-1/2 | | 5(x-7)/7=15 | | a+2/6=a-2 | | -132=8h-11 | | 33.99+.45x=44.99+.40x | | 33.99+.45=44.99.40x | | 33.99+.45x=44.99+40x | | 7x+2-2x=12 | | 4x+10=5x+20+6x |