X5-3x2+7x-11/2x+1

Simple and best practice solution for X5-3x2+7x-11/2x+1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for X5-3x2+7x-11/2x+1 equation:


x in (-oo:+oo)

X^5-(3*x^2)+7*x-((11/2)*x)+1 = 0

X^5-3*x^2+7*x+(-11/2)*x+1 = 0

X^5-3*x^2+3/2*x+1 = 0

DELTA = (3/2)^2-(-3*4*(X^5+1))

DELTA = 12*(X^5+1)+9/4

12*(X^5+1)+9/4 = 0

(4*12*(X^5+1))/4+9/4 = 0

4*12*(X^5+1)+9 = 0

48*X^5+57 = 0

(48*X^5+57)/4 = 0

(48*X^5+57)/4 = 0 // * 4

48*X^5+57 = 0

48*X^5 = -57 // : 48

X^5 = -19/16

X^5 = -19/16 // ^ 1/5

X = -(19/16)^(1/5)

DELTA = 0 <=> t_1 = -(19/16)^(1/5)

x = -3/2/(-3*2) i X = -(19/16)^(1/5)

x = 1/4 i X = -(19/16)^(1/5)

( x = ((12*(X^5+1)+9/4)^(1/2)-3/2)/(-3*2) or x = (-(12*(X^5+1)+9/4)^(1/2)-3/2)/(-3*2) ) i X > -(19/16)^(1/5)

( x = ((12*(X^5+1)+9/4)^(1/2)-3/2)/(-6) or x = ((12*(X^5+1)+9/4)^(1/2)+3/2)/6 ) i X > -(19/16)^(1/5)

X+(19/16)^(1/5) > 0

X+(19/16)^(1/5) > 0 // - (19/16)^(1/5)

X > -(19/16)^(1/5)

x in { 1/4, ((12*(X^5+1)+9/4)^(1/2)-3/2)/(-6), ((12*(X^5+1)+9/4)^(1/2)+3/2)/6 }

See similar equations:

| 10=15t-5t^2 | | 3.5=m-0.5 | | -x^2-8x-18=0 | | 2x^2-40=0 | | x=-20 | | 4x^2-31x+41=-7x+6 | | 5a+6x+4z=63 | | 11x+6=50 | | -3x+2(x+4)=3-2x | | 6m-2(4+3m)= | | 5-8x=73-36 | | y-19=133 | | 7x+7(x-5)=91 | | 86-5x=40x+21 | | Y-b=mc | | 10-10x=23-17x | | -1=5x+5 | | -x+1=2x-4 | | -2x-4=3x-2 | | -2x=3x+7 | | 6y-10y+7y+5y+9y= | | -2x-1=3x+5. | | (2+v)(2v-1)=0 | | 7x-82=3x-14 | | 7x+4(2x+14)=146 | | 71-3x= | | -0,000001x+8=1,5 | | 4x^2-x= | | 39-2x=7x+15 | | 3x^4=6x^2-3 | | 9(s+2)=s+26 | | 2x^2-2x+k^2-8k+2kx+17=0 |

Equations solver categories