X=(3x+1)(2x-1)

Simple and best practice solution for X=(3x+1)(2x-1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for X=(3x+1)(2x-1) equation:



X=(3X+1)(2X-1)
We move all terms to the left:
X-((3X+1)(2X-1))=0
We multiply parentheses ..
-((+6X^2-3X+2X-1))+X=0
We calculate terms in parentheses: -((+6X^2-3X+2X-1)), so:
(+6X^2-3X+2X-1)
We get rid of parentheses
6X^2-3X+2X-1
We add all the numbers together, and all the variables
6X^2-1X-1
Back to the equation:
-(6X^2-1X-1)
We add all the numbers together, and all the variables
X-(6X^2-1X-1)=0
We get rid of parentheses
-6X^2+X+1X+1=0
We add all the numbers together, and all the variables
-6X^2+2X+1=0
a = -6; b = 2; c = +1;
Δ = b2-4ac
Δ = 22-4·(-6)·1
Δ = 28
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{28}=\sqrt{4*7}=\sqrt{4}*\sqrt{7}=2\sqrt{7}$
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{7}}{2*-6}=\frac{-2-2\sqrt{7}}{-12} $
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{7}}{2*-6}=\frac{-2+2\sqrt{7}}{-12} $

See similar equations:

| 3a+8(1+a)=96 | | 8n-n=n+6n | | -(d-3)=18 | | 4y×y=3 | | 2x+15+4x+5=180 | | n=-19+12/49 | | -74=-7x-7x-4 | | -17-x/2=-36 | | x+33+x+55=180 | | 17/8n=-111/4 | | 2(x-10)=-40 | | 1/4(x-40)=5 | | x+338+x+55=180 | | 72=—12(—3x) | | 5x+4+4x+80=180 | | 3(x-9)+3-x=60 | | 5x–7=4x+1,5 | | 4x^-24x+7=3 | | -1.5=3(x+2.19) | | 26=1⁄2(-26-6x) | | -5683=-4c+2c-3988 | | 3(3x+7)=9x-15 | | -4(n-2.2)=-2(n+1.4) | | 15x-17=23x-5 | | 4a-4+7a=3+2a | | 1⁄2(6x-4)=26 | | 1x+11=18 | | 4(2x+5)=10x+20 | | 4(-5x+4)=176 | | 4(5)^x=6(3)^x+2 | | 23x-5=15x-17 | | 5x+10+4x+13=180 |

Equations solver categories