X=(3x-23)(2x+37)

Simple and best practice solution for X=(3x-23)(2x+37) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for X=(3x-23)(2x+37) equation:



X=(3X-23)(2X+37)
We move all terms to the left:
X-((3X-23)(2X+37))=0
We multiply parentheses ..
-((+6X^2+111X-46X-851))+X=0
We calculate terms in parentheses: -((+6X^2+111X-46X-851)), so:
(+6X^2+111X-46X-851)
We get rid of parentheses
6X^2+111X-46X-851
We add all the numbers together, and all the variables
6X^2+65X-851
Back to the equation:
-(6X^2+65X-851)
We add all the numbers together, and all the variables
X-(6X^2+65X-851)=0
We get rid of parentheses
-6X^2+X-65X+851=0
We add all the numbers together, and all the variables
-6X^2-64X+851=0
a = -6; b = -64; c = +851;
Δ = b2-4ac
Δ = -642-4·(-6)·851
Δ = 24520
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{24520}=\sqrt{4*6130}=\sqrt{4}*\sqrt{6130}=2\sqrt{6130}$
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-64)-2\sqrt{6130}}{2*-6}=\frac{64-2\sqrt{6130}}{-12} $
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-64)+2\sqrt{6130}}{2*-6}=\frac{64+2\sqrt{6130}}{-12} $

See similar equations:

| 0.6(3+m)=0.8(4-m | | 36+3.50=4.25x | | 7t-6=3t-30 | | k+523.89=812.57 | | 3x+6+3x-28=180 | | 16=5x-7x-8 | | 6x-6=5x-6 | | 3|7w+15|=–6w | | 3|7w+15|=–6 | | F(x)=x2-49 | | 3+4x=9x+13= | | 2/3(4u+6)-2=10 | | X+(0.4)x=24 | | 3x-4=7x-6 | | −3x+5=23 | | 2x+15=43-5x= | | 7x-4=20+3x= | | a+10/4=1 | | C+5=23-2c | | 1-y+5÷3=3(y-1)÷4 | | X+11y=55 | | 3x-2=10x+6 | | 3-(1/6)x=(3/2) | | |2t+9|=4 | | -9{t-2}=4{t-15} | | 17x+5=170 | | g/6+5/6=6 | | 7=a+10/4 | | F(x)=-x2+6 | | x=(2 | | 2.7(5.1x=4.9)=3.2x=28.9 | | 20x+28=4x+6.5 |

Equations solver categories