If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X=(6X+5)(7X-8)
We move all terms to the left:
X-((6X+5)(7X-8))=0
We multiply parentheses ..
-((+42X^2-48X+35X-40))+X=0
We calculate terms in parentheses: -((+42X^2-48X+35X-40)), so:We add all the numbers together, and all the variables
(+42X^2-48X+35X-40)
We get rid of parentheses
42X^2-48X+35X-40
We add all the numbers together, and all the variables
42X^2-13X-40
Back to the equation:
-(42X^2-13X-40)
X-(42X^2-13X-40)=0
We get rid of parentheses
-42X^2+X+13X+40=0
We add all the numbers together, and all the variables
-42X^2+14X+40=0
a = -42; b = 14; c = +40;
Δ = b2-4ac
Δ = 142-4·(-42)·40
Δ = 6916
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6916}=\sqrt{4*1729}=\sqrt{4}*\sqrt{1729}=2\sqrt{1729}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-2\sqrt{1729}}{2*-42}=\frac{-14-2\sqrt{1729}}{-84} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+2\sqrt{1729}}{2*-42}=\frac{-14+2\sqrt{1729}}{-84} $
| 16/18=33/x | | x/25+x/3=4 | | 3^6x=81^x | | X+7x+2x=10 | | 13=w+8w= | | -2(x^2+1)=6(-2x^2+3) | | 10x-4+8x+6+6x-2=360 | | -3p-5=11 | | p−6=6p= | | 3(x-6)=-2x-3 | | h+5=18h= | | r/3.5=3.6/2.8 | | 3x-9=720 | | X^2+5x+110=0 | | 7(4w+1)/5=4 | | 28h+105=168 | | r−422=552 | | 1/2n3=6 | | 7(4x+1)-3x=5x-13 | | n+1/2=7/4n= | | 2y-76+122=180 | | 3x=-4x-49 | | -3x-6=-19 | | -4(k+6)-2=-40+3k | | 3^x+9=27 | | 11x+16=9(x+12) | | 2(3x-7=22 | | -5(a+6)=-4a-31 | | 6x+3=5(x+10) | | c=4c-60 | | 7(x^2+3)-3(2x^2-2)=127 | | (x-4)(2x-8)=2800 |