X=(6x-4)(4x+14)

Simple and best practice solution for X=(6x-4)(4x+14) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for X=(6x-4)(4x+14) equation:



X=(6X-4)(4X+14)
We move all terms to the left:
X-((6X-4)(4X+14))=0
We multiply parentheses ..
-((+24X^2+84X-16X-56))+X=0
We calculate terms in parentheses: -((+24X^2+84X-16X-56)), so:
(+24X^2+84X-16X-56)
We get rid of parentheses
24X^2+84X-16X-56
We add all the numbers together, and all the variables
24X^2+68X-56
Back to the equation:
-(24X^2+68X-56)
We add all the numbers together, and all the variables
X-(24X^2+68X-56)=0
We get rid of parentheses
-24X^2+X-68X+56=0
We add all the numbers together, and all the variables
-24X^2-67X+56=0
a = -24; b = -67; c = +56;
Δ = b2-4ac
Δ = -672-4·(-24)·56
Δ = 9865
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-67)-\sqrt{9865}}{2*-24}=\frac{67-\sqrt{9865}}{-48} $
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-67)+\sqrt{9865}}{2*-24}=\frac{67+\sqrt{9865}}{-48} $

See similar equations:

| 32-14=2x-4-x | | 11u2–2u=0 | | 60-y=159 | | 2(p+6)=6(p–0) | | -11-96u-59=-11(8u-995) | | -13/3=3/2m | | 3a-48=2a+27 | | 3(3-y)-y=5 | | b.6b=30 | | 12x-5x=51 | | 7.5+m=20 | | x=(2/9)x+(1/6)x+55 | | x+296=285 | | -(4/7)(x-(1/4))=3/7 | | x.5x=25 | | -3.5+x=1.2 | | (-5.2)(7.5)=x | | x=(21/54)x+55 | | 7^4x-8=2401 | | 9÷8a=-2 | | Y=90x+75 | | w−60=31 | | X-7+2=y | | 6+7x=6x+18 | | 6x+54=4x-6 | | 10x-50=5xx30 | | (9x+1)+(7x-9)+(5x-11)=360 | | 7(w-13)=35 | | x²-9x-70=0 | | k2-12k-57=6 | | (20+5x)=15 | | 2(2.5x1-9)+6x1=-7 |

Equations solver categories