If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X=(7X-1)(6X-1)
We move all terms to the left:
X-((7X-1)(6X-1))=0
We multiply parentheses ..
-((+42X^2-7X-6X+1))+X=0
We calculate terms in parentheses: -((+42X^2-7X-6X+1)), so:We add all the numbers together, and all the variables
(+42X^2-7X-6X+1)
We get rid of parentheses
42X^2-7X-6X+1
We add all the numbers together, and all the variables
42X^2-13X+1
Back to the equation:
-(42X^2-13X+1)
X-(42X^2-13X+1)=0
We get rid of parentheses
-42X^2+X+13X-1=0
We add all the numbers together, and all the variables
-42X^2+14X-1=0
a = -42; b = 14; c = -1;
Δ = b2-4ac
Δ = 142-4·(-42)·(-1)
Δ = 28
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{28}=\sqrt{4*7}=\sqrt{4}*\sqrt{7}=2\sqrt{7}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-2\sqrt{7}}{2*-42}=\frac{-14-2\sqrt{7}}{-84} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+2\sqrt{7}}{2*-42}=\frac{-14+2\sqrt{7}}{-84} $
| 5(16^18)=4^x | | 6+2p=6(1-7p) | | 3x-(×+2)=4 | | -9x+1=3(x-15)-2 | | 2n-8=15 | | 72=4v+8 | | 2(60+b4+15b)=270 | | y/2=8=6 | | 8(w+5)-6w=36 | | X=(7x-1) | | 5(1/5(a+10)=5(-3) | | 77-(7x+3)=7(x+2)+x | | 2x2+5=41 | | 7x=30−8x | | 43x+1,357x-61=28(50x+18 | | 2(15(4)+b(4)+15(b)=270 | | 9x+27=8x+66 | | t/3=6/1/2 | | 12+7(x-4)=14 | | 5x-(×+6)=10 | | (120x+80)+(140x+100)=100 | | -7x-1=-6x-9 | | 6(x-9)=2x+15 | | (x+4)^2+1=65 | | 4r=56 | | 15+5r=3r-r | | 15(x+6)=45 | | 2x^2+3=2x^2-4x+5 | | 3x+2+7x+8=90 | | x-34=25 | | 0.5d^2+d+4=0 | | x^2+32=27 |