X=(7x-1)(9x+5)

Simple and best practice solution for X=(7x-1)(9x+5) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for X=(7x-1)(9x+5) equation:



X=(7X-1)(9X+5)
We move all terms to the left:
X-((7X-1)(9X+5))=0
We multiply parentheses ..
-((+63X^2+35X-9X-5))+X=0
We calculate terms in parentheses: -((+63X^2+35X-9X-5)), so:
(+63X^2+35X-9X-5)
We get rid of parentheses
63X^2+35X-9X-5
We add all the numbers together, and all the variables
63X^2+26X-5
Back to the equation:
-(63X^2+26X-5)
We add all the numbers together, and all the variables
X-(63X^2+26X-5)=0
We get rid of parentheses
-63X^2+X-26X+5=0
We add all the numbers together, and all the variables
-63X^2-25X+5=0
a = -63; b = -25; c = +5;
Δ = b2-4ac
Δ = -252-4·(-63)·5
Δ = 1885
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-25)-\sqrt{1885}}{2*-63}=\frac{25-\sqrt{1885}}{-126} $
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-25)+\sqrt{1885}}{2*-63}=\frac{25+\sqrt{1885}}{-126} $

See similar equations:

| 6a+5a=—11 | | x^2+6x+9=-36 | | 0.3x-4=8 | | 2y+(y+6)=180 | | 3x-5/7=4/7 | | -1x-3=-3x+1 | | 0.2x+2=-3 | | 2(x-3)+3=2x+3 | | 7x-33=15x-10 | | 18-2y=-16 | | 5m-3=100 | | d/2+8=30 | | 3x+6=-3(2x+4) | | 8m-3m-3+5m=m+15+27 | | x+1x+2=20 | | x^2+2=394 | | (4x)-(x-5)=8 | | -4x-2=-1x | | (x-19)/7=-1 | | z/3+7=37 | | 4x-1=6x+8x+15 | | d+5^2=36 | | 5|-2-5x|=35 | | 16m-15m=13m | | -7x-17=-5x-3 | | x/4+2=3.2 | | 35=-15+-2x | | (2x-19)+(x+39)+(x)=180 | | 5x=2x-42-3x* | | 36=q+19 | | (t+1)2+(t+8)2=45 | | 5y+17+y-2=y-25 |

Equations solver categories