X=(9x-24)(4x+36)

Simple and best practice solution for X=(9x-24)(4x+36) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for X=(9x-24)(4x+36) equation:



X=(9X-24)(4X+36)
We move all terms to the left:
X-((9X-24)(4X+36))=0
We multiply parentheses ..
-((+36X^2+324X-96X-864))+X=0
We calculate terms in parentheses: -((+36X^2+324X-96X-864)), so:
(+36X^2+324X-96X-864)
We get rid of parentheses
36X^2+324X-96X-864
We add all the numbers together, and all the variables
36X^2+228X-864
Back to the equation:
-(36X^2+228X-864)
We add all the numbers together, and all the variables
X-(36X^2+228X-864)=0
We get rid of parentheses
-36X^2+X-228X+864=0
We add all the numbers together, and all the variables
-36X^2-227X+864=0
a = -36; b = -227; c = +864;
Δ = b2-4ac
Δ = -2272-4·(-36)·864
Δ = 175945
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-227)-\sqrt{175945}}{2*-36}=\frac{227-\sqrt{175945}}{-72} $
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-227)+\sqrt{175945}}{2*-36}=\frac{227+\sqrt{175945}}{-72} $

See similar equations:

| 96=4z+8z | | 30=12+6a–3a | | 4(11-z)=2z-4 | | 48=7v+9v | | -24+2x=30x+4 | | |x-8|=10 | | 3(8x-8)+4x=-248 | | -14(q-3)=-14 | | -2(5-5m)-3m+17=0 | | (6x-16)=(6x+19) | | 3+7(2r+8)=115 | | 7x+3x+8x=90 | | (N*2)=5-3n | | -30+3n=6(8-n)-6 | | -25+n-6+14=-3n-13n | | 400-3x=322 | | -56=4(3x+1)-2x | | 5n+5(1-6n)=-195 | | 2y+3=4y+21 | | -3(b-4)=-6(b+3) | | x-9/3=11 | | 3*19+2x=48.2 | | 8(7+2x)=168 | | -24-7r=-8(2r-6) | | (a-3)-2=-16 | | –8a+2a=42 | | -3(x+2)=9(x-9) | | -1/2(4x+2)=-2x-4 | | 4x-3+x+13=0 | | 42=–8a+2a | | -3(x+2)=9(x-9 | | 9y+6y=15 |

Equations solver categories