If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X=(X+5)(X-4)
We move all terms to the left:
X-((X+5)(X-4))=0
We multiply parentheses ..
-((+X^2-4X+5X-20))+X=0
We calculate terms in parentheses: -((+X^2-4X+5X-20)), so:We add all the numbers together, and all the variables
(+X^2-4X+5X-20)
We get rid of parentheses
X^2-4X+5X-20
We add all the numbers together, and all the variables
X^2+X-20
Back to the equation:
-(X^2+X-20)
X-(X^2+X-20)=0
We get rid of parentheses
-X^2+X-X+20=0
We add all the numbers together, and all the variables
-1X^2+20=0
a = -1; b = 0; c = +20;
Δ = b2-4ac
Δ = 02-4·(-1)·20
Δ = 80
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{80}=\sqrt{16*5}=\sqrt{16}*\sqrt{5}=4\sqrt{5}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{5}}{2*-1}=\frac{0-4\sqrt{5}}{-2} =-\frac{4\sqrt{5}}{-2} =-\frac{2\sqrt{5}}{-1} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{5}}{2*-1}=\frac{0+4\sqrt{5}}{-2} =\frac{4\sqrt{5}}{-2} =\frac{2\sqrt{5}}{-1} $
| 5(a-6)=-27+6a | | -6=(1/3)+x | | -3h+1=-7 | | 2+2(1-6b)=64 | | 5x+2=-11 | | 92=20+9r | | 6(x-7)=4x+-8 | | 6n=4n-18 | | 2/5n+1=1/2n+2 | | 28-x=17-3x | | x+.65x=200 | | 26x+7=5(5x+5) | | 8=9y+4-2y | | 5(4+4r)=140 | | 2w+8=1 | | 10x+20=3(3x+4) | | 2.2+10m=8.91 | | 3/8=-9/4x | | 2(4x-3)=7x+-6 | | 2(10-6h=h-8 | | 25t+5=25t-7 | | 8x-2x+6=x-7+13 | | 70+7x=14+14x | | 6/5(m/1)=26 | | Z-15=3z | | 8x-2-3x=x+8+x | | 0.8+y=2.9 | | 2.4+10m=7.31 | | 5n+7=2n+12 | | 4y=14=2y-4 | | 3/4×x=6 | | 7x-(2x+20)=15 |