If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X=10-3X^2+6
We move all terms to the left:
X-(10-3X^2+6)=0
We get rid of parentheses
3X^2+X-10-6=0
We add all the numbers together, and all the variables
3X^2+X-16=0
a = 3; b = 1; c = -16;
Δ = b2-4ac
Δ = 12-4·3·(-16)
Δ = 193
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{193}}{2*3}=\frac{-1-\sqrt{193}}{6} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{193}}{2*3}=\frac{-1+\sqrt{193}}{6} $
| x(2)=20 | | n=4.2 | | .4x+3=47 | | 3-6x=x | | 3(x+25)=39 | | 4/y+4/y+6=1 | | 7n=(2)(21) | | s-$5=$25.99 | | 7(x^2-9)=x(x-3) | | 2/3(6x-3)=1/2(6x4) | | 4x-24=3x+27 | | -4x+3=-x+3 | | 0.4x+1=5.3 | | 6*(5-x)=12 | | 4x+1=5+-5 | | 13-d=38 | | 24=3(n–5) | | |2x+3|=14 | | 50+5x-2x+5=61+x | | 5(7y^2+1)+11y=11 | | _x^2+27x+182=0 | | 3(y–5)=12 | | 3(y–5)=12 | | 3/7k-5/3=-2-3/4k | | 12d-4=4d | | 5=u-49 | | 100x+18=160 | | 45c-9-10=43c+9 | | 2m-1=4m+5-8m-6+3 | | 2s²+11s-216=0 | | 16x^2-8x-196=0 | | 16x^2-8x-16=0 |