If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X=2X(2X+5)+2(2X+5)(X+3)+2(X)(X+3)
We move all terms to the left:
X-(2X(2X+5)+2(2X+5)(X+3)+2(X)(X+3))=0
We multiply parentheses ..
-(2X(2X+5)+2(+2X^2+6X+5X+15)+2X(X+3))+X=0
We calculate terms in parentheses: -(2X(2X+5)+2(+2X^2+6X+5X+15)+2X(X+3)), so:We add all the numbers together, and all the variables
2X(2X+5)+2(+2X^2+6X+5X+15)+2X(X+3)
determiningTheFunctionDomain 2(+2X^2+6X+5X+15)+2X(2X+5)+2X(X+3)
We multiply parentheses
4X^2+4X^2+2X^2+12X+10X+10X+6X+30
We add all the numbers together, and all the variables
10X^2+38X+30
Back to the equation:
-(10X^2+38X+30)
X-(10X^2+38X+30)=0
We get rid of parentheses
-10X^2+X-38X-30=0
We add all the numbers together, and all the variables
-10X^2-37X-30=0
a = -10; b = -37; c = -30;
Δ = b2-4ac
Δ = -372-4·(-10)·(-30)
Δ = 169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{169}=13$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-37)-13}{2*-10}=\frac{24}{-20} =-1+1/5 $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-37)+13}{2*-10}=\frac{50}{-20} =-2+1/2 $
| 3(x+6)-8x=-2+5(2x+1) | | 6x+14=7x | | 5s+9=14 | | 7(-5)-1/2=2(y-5) | | 6x+15=-4x-16 | | (6x+3)=-(5x-4) | | 176-3x=8x-11 | | 5(y+7)-8y=26 | | 3r+6=6-2r | | -y-6y=7y | | 3(2x+3)=x-31 | | 6÷d=16 | | 31.4=1.2+w | | 9+x/10=10 | | Y=2x(2x+5)+2(2x+5)(x+3)+2(x)(x+3) | | 6x-5=3(1+2x) | | -6(w+2)=-4w+4 | | 4(2x-1)+5=13 | | 2x+x-5=100 | | 75m=50(12)+125(m−12) | | 3(5y)-16=7y | | 1x-2/5=38 | | 8a+20=10 | | 9x=-9x+6x | | -10x+8=-112 | | x2+2x-10=0 | | 6=1.2z | | -17=5x=3 | | x-2/5=38 | | -9=-10+x/6 | | 2b=30+0 | | X^2+19x+16X=0 |