X=320+1/5x

Simple and best practice solution for X=320+1/5x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for X=320+1/5x equation:



X=320+1/5X
We move all terms to the left:
X-(320+1/5X)=0
Domain of the equation: 5X)!=0
X!=0/1
X!=0
X∈R
We add all the numbers together, and all the variables
X-(1/5X+320)=0
We get rid of parentheses
X-1/5X-320=0
We multiply all the terms by the denominator
X*5X-320*5X-1=0
Wy multiply elements
5X^2-1600X-1=0
a = 5; b = -1600; c = -1;
Δ = b2-4ac
Δ = -16002-4·5·(-1)
Δ = 2560020
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2560020}=\sqrt{4*640005}=\sqrt{4}*\sqrt{640005}=2\sqrt{640005}$
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1600)-2\sqrt{640005}}{2*5}=\frac{1600-2\sqrt{640005}}{10} $
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1600)+2\sqrt{640005}}{2*5}=\frac{1600+2\sqrt{640005}}{10} $

See similar equations:

| 42+u=7u | | 47.5+x+93=180 | | 3(x+10)-8=80 | | 45.5+93+x=180 | | 6×(x+2)-(x+1)=1 | | 8^2x=6 | | 4(2+x)=3(1+x) | | 18(9c-1)-14=160c+18 | | 24+3y-9=11y-9-2y | | 80/x-0.2=0 | | 21x/48=1.75 | | (y-5)^2=2y^2-y+43 | | (0.0025)(2x^2)=3.4*10^-11 | | 26-x=-76 | | (9-z)(4z+6)=0 | | 17x9(x+4)=3x-26 | | 12+2x=-(x+2)+3x | | x-8x=-8x | | 21+2x=9x+21 | | 2x+35x=10 | | -47=u/5 | | 2x+3=5x=10 | | -w/4=-36 | | 27y-12=1y-4 | | 27y-12=1-4 | | 3^(x+2)=9^(2x) | | 4^3x-13=16 | | 4^3x-13=15 | | 7b-2.5=6b-1.4 | | 7b-2.5=6b-0.71 | | 40=y/3+12 | | 30x^2-45x-75=0 |

Equations solver categories