X=5(2x-5)(5x+4)

Simple and best practice solution for X=5(2x-5)(5x+4) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for X=5(2x-5)(5x+4) equation:



X=5(2X-5)(5X+4)
We move all terms to the left:
X-(5(2X-5)(5X+4))=0
We multiply parentheses ..
-(5(+10X^2+8X-25X-20))+X=0
We calculate terms in parentheses: -(5(+10X^2+8X-25X-20)), so:
5(+10X^2+8X-25X-20)
We multiply parentheses
50X^2+40X-125X-100
We add all the numbers together, and all the variables
50X^2-85X-100
Back to the equation:
-(50X^2-85X-100)
We add all the numbers together, and all the variables
X-(50X^2-85X-100)=0
We get rid of parentheses
-50X^2+X+85X+100=0
We add all the numbers together, and all the variables
-50X^2+86X+100=0
a = -50; b = 86; c = +100;
Δ = b2-4ac
Δ = 862-4·(-50)·100
Δ = 27396
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{27396}=\sqrt{36*761}=\sqrt{36}*\sqrt{761}=6\sqrt{761}$
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(86)-6\sqrt{761}}{2*-50}=\frac{-86-6\sqrt{761}}{-100} $
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(86)+6\sqrt{761}}{2*-50}=\frac{-86+6\sqrt{761}}{-100} $

See similar equations:

| z/9+7=-9 | | -6+s/4=4 | | 8−3x=5x2 | | 0=-16t^2+1965 | | 10v-v=9 | | –17=7+3x | | 4x+6=-8x+18 | | (1/3)(9k+12)=15 | | 10^x2-26x=-12 | | (-8)*x=-40 | | -2a-6=-10 | | 3x+20=5x+8 | | 0=-16t^2+1972 | | 10x^2+6x=8 | | 7-14m=2-5 | | (x+2)(x–3)–3=11 | | 2x+1=5x+5=180 | | -3(n-5)+5n=-5 | | 3y—20=7 | | 32*x+38=102 | | -8(m-3)=64 | | 4/b=3-2/b | | k/6+4=15 | | 6m−8=22 | | y-47=13 | | -2|3x+7|+8=10 | | 22=8x+10-4x | | 7x+40=3x+40 | | 1/512^2x=1/64^x^2 | | 5x-2+x=9+3x+101 | | -7(-3x-7)=43x+49 | | 180=2x+10+4x+20 |

Equations solver categories