If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X=5X^2=10
We move all terms to the left:
X-(5X^2)=0
determiningTheFunctionDomain -5X^2+X=0
a = -5; b = 1; c = 0;
Δ = b2-4ac
Δ = 12-4·(-5)·0
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1}=1$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-1}{2*-5}=\frac{-2}{-10} =1/5 $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+1}{2*-5}=\frac{0}{-10} =0 $
| -9x-3=-3(3x+2) | | 2.5x-4=1.25x+8 | | -30x-5x=120 | | x+63+2x=90 | | 84=7x+14 | | 2(n–7)+3=9 | | -5=x=14 | | 2x+63=96 | | 7x^+2x-1=0 | | 55=4x+11 | | x8−6=−12 | | 52x=752 | | 16+x-(3+2x)-9=8 | | 1,5x+4,5=0 | | 2-x-4=5x | | 17x+15=-6 | | 6b^2+11b-6=0 | | n=5+(n-1)(1/6) | | 5+x/4=24 | | 4x+6+3=10 | | y/2−2=16 | | -6x+(x+2)=36 | | (x=3)(x-7)=0 | | y2−2=16 | | -17=-10=x | | x(3-x)(x-5)=0 | | 4x2-7x+3=0 | | (7x+20)=111 | | -15=x=6 | | 19t=29+6t | | 4y+3=(-19) | | 8n^2-4=0 |