If it's not what You are looking for type in the equation solver your own equation and let us solve it.
XX(X+5)=84
We move all terms to the left:
XX(X+5)-(84)=0
We multiply parentheses
X^2+5X-84=0
a = 1; b = 5; c = -84;
Δ = b2-4ac
Δ = 52-4·1·(-84)
Δ = 361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{361}=19$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-19}{2*1}=\frac{-24}{2} =-12 $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+19}{2*1}=\frac{14}{2} =7 $
| 5t=4t-9 | | X^2(x+5)=84 | | X2x(x+5)=84 | | 0.4(1+0.5m)=7m | | 4(3x-5)=6x–2 | | 4(3x-5)=6–2 | | n3=10 | | 5/24=10/g= | | 8x-2H=40 | | 5/12=10/g | | x+4 7=1 | | 2n=642n+22n-2 | | x+4/9=7/9 | | 2n=10002n+22n-2 | | 4b^2+18=0 | | 7h-2/5=6h-7/5 | | 19+x-12+6x=5x+14 | | -m^2+30=0 | | 24x^2+250x+600=0 | | X2-8x+18=0 | | 3b^2-9b-120=0 | | 5x2x=14 | | 10x+2-3=12 | | 3y-1+7=13 | | 4(w+2)=-2(7-w) | | 5(p+3)=3p+13 | | 0.2(16y–21.5)=0.5(29+25.2y) | | 3x-5+2x+10+x+25=180 | | =215a | | Z2+25z=0 | | 76+45-26=5.753x | | 24=5x+16 |