If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-5=(3/4)(Y+3)
We move all terms to the left:
-5-((3/4)(Y+3))=0
Domain of the equation: 4)(Y+3))!=0We add all the numbers together, and all the variables
Y∈R
-((+3/4)(Y+3))-5=0
We multiply parentheses ..
-((+3Y^2+3/4*3))-5=0
We multiply all the terms by the denominator
-((+3Y^2+3-5*4*3))=0
We calculate terms in parentheses: -((+3Y^2+3-5*4*3)), so:We get rid of parentheses
(+3Y^2+3-5*4*3)
We get rid of parentheses
3Y^2+3-5*4*3
We add all the numbers together, and all the variables
3Y^2-57
Back to the equation:
-(3Y^2-57)
-3Y^2+57=0
a = -3; b = 0; c = +57;
Δ = b2-4ac
Δ = 02-4·(-3)·57
Δ = 684
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{684}=\sqrt{36*19}=\sqrt{36}*\sqrt{19}=6\sqrt{19}$$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{19}}{2*-3}=\frac{0-6\sqrt{19}}{-6} =-\frac{6\sqrt{19}}{-6} =-\frac{\sqrt{19}}{-1} $$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{19}}{2*-3}=\frac{0+6\sqrt{19}}{-6} =\frac{6\sqrt{19}}{-6} =\frac{\sqrt{19}}{-1} $
| -15.3=1.1x | | 2.02=1.6x=3.3 | | b-7=-17.2 | | 5x-11=-5x-12 | | 5(7q-4)=35q-20 | | -7=32-x/8 | | 4-6x=6-5x-2 | | -(8y+4)=5+7y-133 | | -5x-11=-5x-12 | | 6=8m+9 | | -40+30x=-100 | | 6x(x-8)-5(x-8)=0 | | 7.97=2x3.14 | | -1x-11=-5x-12 | | 4x+80=112 | | (2+4)*5=x+20 | | 2x(3)+7=15 | | 7x=96-7 | | x+2x+6+2x-4=10.90 | | (x+2)=x(x^2+2x+1) | | w3=27/125 | | w2=27/125 | | x^2-6x=82 | | 6=x11- | | 0x-11=-5x-12 | | x-11=-5x-12 | | 17x-11=-5x-12 | | 15x-11=-5x-12 | | x=18x-84 | | 3x-11=-5x-12 | | 4x-11=-5x-12 | | 4(3s-3)=3(s+1) |