Y2-3=(y-2)(y+4)

Simple and best practice solution for Y2-3=(y-2)(y+4) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for Y2-3=(y-2)(y+4) equation:



2-3=(Y-2)(Y+4)
We move all terms to the left:
2-3-((Y-2)(Y+4))=0
We add all the numbers together, and all the variables
-((Y-2)(Y+4))-1=0
We multiply parentheses ..
-((+Y^2+4Y-2Y-8))-1=0
We calculate terms in parentheses: -((+Y^2+4Y-2Y-8)), so:
(+Y^2+4Y-2Y-8)
We get rid of parentheses
Y^2+4Y-2Y-8
We add all the numbers together, and all the variables
Y^2+2Y-8
Back to the equation:
-(Y^2+2Y-8)
We get rid of parentheses
-Y^2-2Y+8-1=0
We add all the numbers together, and all the variables
-1Y^2-2Y+7=0
a = -1; b = -2; c = +7;
Δ = b2-4ac
Δ = -22-4·(-1)·7
Δ = 32
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{32}=\sqrt{16*2}=\sqrt{16}*\sqrt{2}=4\sqrt{2}$
$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-4\sqrt{2}}{2*-1}=\frac{2-4\sqrt{2}}{-2} $
$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+4\sqrt{2}}{2*-1}=\frac{2+4\sqrt{2}}{-2} $

See similar equations:

| Y^2-3=(y-2)(y+4) | | x^2+30x-125=0 | | -4p-45=15* | | x^2-11x-6=-8x+4 | | 3-x/x=-12 | | |x|-5=1 | | (3/5)x+7=13;x= | | x2=2x+2 | | -7x+1=2x+46 | | 4(-5a-9)10a=-10a-4(11a-2) | | 3x+2=12–7x | | a÷6-7=15 | | 5x(3x-4)-3x(4x-2)=2x(5x+7) | | x=12+0.6/0.8 | | 0,007=7x10 | | 7+3y=-3y-1 | | 2+2+3x=40 | | 4e-7=33 | | –8f+5=–8f | | 6=2-7n | | 6x+2=2x-9 | | 75/2x=16 | | 4x+7=6x-10 | | 3+5-x=-2 | | 3x−10=−4 | | 7x+8=7x-8 | | (x+2)/3=x/2 | | 32+49+x=180 | | 8.3+x=13.8 | | 19x+6=19x+6 | | -5x+6x-8x=-150 | | yXy=1Xy |

Equations solver categories