Y=(20x+1)(700-25x)

Simple and best practice solution for Y=(20x+1)(700-25x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for Y=(20x+1)(700-25x) equation:



=(20Y+1)(700-25Y)
We move all terms to the left:
-((20Y+1)(700-25Y))=0
We add all the numbers together, and all the variables
-((20Y+1)(-25Y+700))=0
We multiply parentheses ..
-((-500Y^2+14000Y-25Y+700))=0
We calculate terms in parentheses: -((-500Y^2+14000Y-25Y+700)), so:
(-500Y^2+14000Y-25Y+700)
We get rid of parentheses
-500Y^2+14000Y-25Y+700
We add all the numbers together, and all the variables
-500Y^2+13975Y+700
Back to the equation:
-(-500Y^2+13975Y+700)
We get rid of parentheses
500Y^2-13975Y-700=0
a = 500; b = -13975; c = -700;
Δ = b2-4ac
Δ = -139752-4·500·(-700)
Δ = 196700625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{196700625}=14025$
$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-13975)-14025}{2*500}=\frac{-50}{1000} =-1/20 $
$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-13975)+14025}{2*500}=\frac{28000}{1000} =28 $

See similar equations:

| (8-d)^2+81=100 | | -4r-4=-7r-10 | | 5^(x+3)=7^x | | 4x^2+8x+3=899 | | 2/9x+16=7/9x-14 | | x=35x+500 | | -6-p=-11 | | -8(y-5)=-3y+10 | | 7n-6=9n+6 | | 5x=-13x | | 10w+1=5+6w | | 9k-8=10k | | M+6=-m | | 3+4b=43 | | 0.7x-3=0.35+4 | | 9(13-x)-4=5(21-2x)+9x | | 2-2x=22+2x | | y-4 + 2 = -1 | | 5^n=625^7 | | -7n-6(1+3n)=4(1-8n)+7n | | 862-b=934 | | 6=-3t | | 9(13-x)-4=5(21-2x)+9 | | 2x^2-8+48=0 | | 0.5x+0.3(50)=0.2(x+30) | | (6x+4)(x-7)=0 | | 6x+4=10+4x-8 | | m(-1)/3=2m-7 | | 1+3c=c+7 | | p-3=2p+4 | | -8-10y=-2y | | 3x+9-8x+6=62/3 |

Equations solver categories