Y=(7x-14)(9x+18)

Simple and best practice solution for Y=(7x-14)(9x+18) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for Y=(7x-14)(9x+18) equation:



=(7Y-14)(9Y+18)
We move all terms to the left:
-((7Y-14)(9Y+18))=0
We multiply parentheses ..
-((+63Y^2+126Y-126Y-252))=0
We calculate terms in parentheses: -((+63Y^2+126Y-126Y-252)), so:
(+63Y^2+126Y-126Y-252)
We get rid of parentheses
63Y^2+126Y-126Y-252
We add all the numbers together, and all the variables
63Y^2-252
Back to the equation:
-(63Y^2-252)
We get rid of parentheses
-63Y^2+252=0
a = -63; b = 0; c = +252;
Δ = b2-4ac
Δ = 02-4·(-63)·252
Δ = 63504
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{63504}=252$
$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-252}{2*-63}=\frac{-252}{-126} =+2 $
$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+252}{2*-63}=\frac{252}{-126} =-2 $

See similar equations:

| ((4x)^0.4)(x)^0.6=10 | | 5/x-1=x/4 | | x+3(3x+3)=4x-3 | | Y=(3x+6)(6x-18) | | 4^x+3=3^x | | 5a-11=2a+7 | | 16q+2q+13q=15 | | 6a+6=-36 | | 8z+6=(2z-1) | | 105x+9.50=14.75​ | | 14(2x-3)-60x=5(15-9) | | 1/6=x/120 | | 1.5=x+0.7 | | 14(2x-3)60x=5(15-9) | | (2x-5)=(2x-7) | | 2x=212,5 | | 1/x=0.10 | | 12(2x-3)-60x=5(15-9) | | 0=w^2-72 | | 9m+6=−21 | | 4+5m=3m-2m+4 | | 02=1.2×w | | 40x8=5 | | -4x27=8 | | -2x-4(x-2)=12 | | -2(6+x)=8-3x | | 5+8x=29+3x | | 16t^2+24t+5=0 | | 12x-3=51-6x | | −56=8x | | 18x²+9x-88=0 | | –99=99y |

Equations solver categories