If it's not what You are looking for type in the equation solver your own equation and let us solve it.
=-16Y^2+10Y+4
We move all terms to the left:
-(-16Y^2+10Y+4)=0
We get rid of parentheses
16Y^2-10Y-4=0
a = 16; b = -10; c = -4;
Δ = b2-4ac
Δ = -102-4·16·(-4)
Δ = 356
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{356}=\sqrt{4*89}=\sqrt{4}*\sqrt{89}=2\sqrt{89}$$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{89}}{2*16}=\frac{10-2\sqrt{89}}{32} $$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{89}}{2*16}=\frac{10+2\sqrt{89}}{32} $
| A=x(500-3x) | | A=x(500-2x) | | x(x+2)(x+4)(x+6)=198 | | √2x-4-√x+5=1 | | 4x^2-27x-900=0 | | A=x(70-2x) | | 6z^2+25z-25=0 | | x^2-3x=2x+84 | | A=x(92-2x) | | 3x=6x-15x+8= | | -2p+20=2p-4 | | 2x^2-15x-24=0 | | 2x^2+15x-24=0 | | 2(x-3)=74 | | r2-7r+6=0 | | 5x+8=223 | | X^2+6x-882=0 | | 0.6=0.9/n | | 5x-5=-16 | | 6/10=0.9/n | | (3y-1)/5=10 | | x+1.8=7 | | 20x^2-57x-9=0 | | 5-8x=3x^2-10x | | 20x^2-111x-9=0 | | 3x^2-8x-2=7-4x | | 0.5x-8=20,x= | | 0.5x-8=20,x | | 4x=45-6x | | 2x+.5x+.25x+3=300 | | 2(t-3)=-10 | | 2x+.5x+.25x=300 |