If it's not what You are looking for type in the equation solver your own equation and let us solve it.
=-16Y^2+11500
We move all terms to the left:
-(-16Y^2+11500)=0
We get rid of parentheses
16Y^2-11500=0
a = 16; b = 0; c = -11500;
Δ = b2-4ac
Δ = 02-4·16·(-11500)
Δ = 736000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{736000}=\sqrt{6400*115}=\sqrt{6400}*\sqrt{115}=80\sqrt{115}$$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-80\sqrt{115}}{2*16}=\frac{0-80\sqrt{115}}{32} =-\frac{80\sqrt{115}}{32} =-\frac{5\sqrt{115}}{2} $$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+80\sqrt{115}}{2*16}=\frac{0+80\sqrt{115}}{32} =\frac{80\sqrt{115}}{32} =\frac{5\sqrt{115}}{2} $
| 2x+20+4x+40+6x+60-(180)=0 | | 18-2x=52 | | 4x-3(x-2)=2(x-1 | | 16r^2+40r+16=0 | | xx4=2.25 | | 1+6.8n+5.29=-13.43 | | 4x+82=2x+106 | | -4x+7+5x=-3+9 | | 6x+125=8x+207 | | (3y+8)(1-y)=0 | | 2)5.6x+1.8-6.6=18.72 | | -9x35=10 | | -45+15=-5x+11x | | 6x+4.4x=5.2 | | −2x^2+9x−3=0 | | -3n-5=-48-40n | | 0=16x^2-167x+385 | | 7/x=4/74/100 | | -3n-5=-48+-40n | | 2x+20+4+40+6x+60=180 | | 10x+15+(5x)=180 | | 6x+34=8x+18 | | 1/8y+4=-11 | | 10x+12)+(5x)=180 | | (10x+12)(5x)=180 | | 6(b-3)=4b-4 | | 1/7y+4=-18 | | 60^3-120x=0 | | 3(n+2)+n=8n-8+6 | | -5+7+2k-3k=-8 | | 6v−5v=5 | | 2^y=5^y-2 |