Y=-4/15x+24x=120

Simple and best practice solution for Y=-4/15x+24x=120 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for Y=-4/15x+24x=120 equation:



=-4/15Y+24Y=120
We move all terms to the left:
-(-4/15Y+24Y)=0
Domain of the equation: 15Y+24Y)!=0
Y∈R
We add all the numbers together, and all the variables
-(+24Y-4/15Y)=0
We get rid of parentheses
-24Y+4/15Y=0
We multiply all the terms by the denominator
-24Y*15Y+4=0
Wy multiply elements
-360Y^2+4=0
a = -360; b = 0; c = +4;
Δ = b2-4ac
Δ = 02-4·(-360)·4
Δ = 5760
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{5760}=\sqrt{576*10}=\sqrt{576}*\sqrt{10}=24\sqrt{10}$
$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-24\sqrt{10}}{2*-360}=\frac{0-24\sqrt{10}}{-720} =-\frac{24\sqrt{10}}{-720} =-\frac{\sqrt{10}}{-30} $
$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+24\sqrt{10}}{2*-360}=\frac{0+24\sqrt{10}}{-720} =\frac{24\sqrt{10}}{-720} =\frac{\sqrt{10}}{-30} $

See similar equations:

| A=8x+78+B=2x+114=180 | | 7.89+9.5b=2.72+4.8b | | (2x+7)x2=20-2x | | –9k+10=19 | | 4g-25+2g-5=90 | | S=2n(n-1) | | 80=-12n+2 | | ¼(8x+4)=2x–4 | | 3+7(5n+2)= | | (8x+4)+130+(3x-6)=180 | | 8x+9(-7)=17 | | 22+a;a=8 | | 3m^2–17m–6=0 | | 162-v=288 | | –10.6=m/0.5+11.7/0.5 | | 4x^2+24x-256=0 | | x+778=100- | | -0.18+w=-0.75 | | 9x=x^2+9 | | –10.6=m+11.7/0.5 | | 5f/3=10 | | z÷4=25 | | 7*2^x+13*3^x=0 | | 6(x-2)^3/2=48 | | A=6+6x3.14= | | 21x+6=6+21x | | 2^x+5*2^x=12 | | x+5+3x-5+2x+12=180 | | 5n+7–3n+3= | | 17-12n=65 | | 5(6−x)=10 | | 2.5x-3=-0.5x+9 |

Equations solver categories