If it's not what You are looking for type in the equation solver your own equation and let us solve it.
=-5Y^2+15Y+50
We move all terms to the left:
-(-5Y^2+15Y+50)=0
We get rid of parentheses
5Y^2-15Y-50=0
a = 5; b = -15; c = -50;
Δ = b2-4ac
Δ = -152-4·5·(-50)
Δ = 1225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1225}=35$$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-15)-35}{2*5}=\frac{-20}{10} =-2 $$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-15)+35}{2*5}=\frac{50}{10} =5 $
| 0.3x+4=24.7 | | 0.3x+4=28.3 | | x+2x-4=4+3x | | x+2x-4=4+3x | | 4m+3=6m+3-2m | | -1=-3x+3x | | 3y-5=6y-2-3 | | 2(h-7)+3=9 | | 2(3x+5)=18x-10 | | 8-5+x=13 | | 4x+(2*(110-x))=360 | | 8+2-x=13 | | 4x+(2x(110-x))=360 | | 2(3x+5)=8x-10 | | 7x-22=23 | | 2/3x–9=1/3x | | 0.32*0.2x+x=1400 | | 3y5=-2 | | ∠A=x+93∘∠B=x+93 | | 5n^2-4n-33=0 | | x-40=7(-2x+2) | | x-40=7(-2x-2) | | 3x-25x-9=1 | | X=12=1/2x+20 | | -7(-2-4r)=-154 | | -3(x-4)+4x=3-9 | | x(5x-9)(2x+9)=0 | | 322=7(4-7a) | | r-2-7=-6.89 | | 7h+h=78 | | -84=-7(r+8)+3r | | 0.22(x+6)=0.2x+5.8 |