If it's not what You are looking for type in the equation solver your own equation and let us solve it.
=4Y^2+40Y+5
We move all terms to the left:
-(4Y^2+40Y+5)=0
We get rid of parentheses
-4Y^2-40Y-5=0
a = -4; b = -40; c = -5;
Δ = b2-4ac
Δ = -402-4·(-4)·(-5)
Δ = 1520
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1520}=\sqrt{16*95}=\sqrt{16}*\sqrt{95}=4\sqrt{95}$$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-40)-4\sqrt{95}}{2*-4}=\frac{40-4\sqrt{95}}{-8} $$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-40)+4\sqrt{95}}{2*-4}=\frac{40+4\sqrt{95}}{-8} $
| 2x+9+2x=0 | | 9(m+6)=72 | | 5q=31;q= | | 3x+6-x=-18 | | 10x=6x-20 | | 5u-6=16 | | _8,5-x=-10,1 | | p=4p+1854 | | 0=+10y=-30 | | 303=15x-2x2 | | 5+(6l)+9=-4l+9+(3l) | | 3(4x–2)–5x=6–7(-x–2) | | 3( | | 303=15x-2x | | 0=-7x-28 | | -5(p+2)=2(2p-15)= | | 7x+10-5=-10x+5x+10 | | 3x=120-27 | | 6×+5y=100 | | 12( | | x+139=0 | | −2=2+4v | | -52-x=-54 | | 4.27-4.3x+5(.3x-2.3)=0 | | -52-x=-56 | | p-5.3=-4.2 | | -15=4m+5= | | 1/4(2x+1.2)=3(0.7x+2)-51/2 | | 4=z-(-6) | | -35-x=-65 | | 2t+9+2=7t+5-4t | | -13-x=-15 |