Z(t)=2t2+7t-4

Simple and best practice solution for Z(t)=2t2+7t-4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for Z(t)=2t2+7t-4 equation:



(Z)=2Z^2+7Z-4
We move all terms to the left:
(Z)-(2Z^2+7Z-4)=0
We get rid of parentheses
-2Z^2+Z-7Z+4=0
We add all the numbers together, and all the variables
-2Z^2-6Z+4=0
a = -2; b = -6; c = +4;
Δ = b2-4ac
Δ = -62-4·(-2)·4
Δ = 68
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$Z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$Z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{68}=\sqrt{4*17}=\sqrt{4}*\sqrt{17}=2\sqrt{17}$
$Z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-2\sqrt{17}}{2*-2}=\frac{6-2\sqrt{17}}{-4} $
$Z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+2\sqrt{17}}{2*-2}=\frac{6+2\sqrt{17}}{-4} $

See similar equations:

| 4x+3=2x+3+2x | | 28-m=17 | | 3x-5=(3/4(8x-80) | | -1/2m=-10 | | k+19=51 | | 3i-10=17 | | 7.z-5/12=4 | | 3x-5=3/48x-80 | | 4i+8=-16 | | 6i+4=-26 | | f-14.26÷3=1.63 | | 67.1=29.7=0.2w | | (2x+1)+5x+5)+90=180 | | 35=10(3b+5) | | 5x^2+6=166 | | h/2+6.83=9.83 | | 6-5+3.y-8=1 | | 6.5p+12=220 | | 4x^2+15x+9=3x | | -6i+7=25 | | −0.97p+p−0.05p= | | 4.9x+39.8=11.2-9.4x | | y10=10 | | 6+8z-3=9z+23-6z | | x-30=366 | | r2=5 | | -4.26=-1.42(b+8) | | 145=-x+253 | | 90-y=167 | | -x+36=226 | | -2x(x+2)(x-3)=0 | | -1=n+5/4 |

Equations solver categories