a(a+3)=3(a+2)

Simple and best practice solution for a(a+3)=3(a+2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for a(a+3)=3(a+2) equation:



a(a+3)=3(a+2)
We move all terms to the left:
a(a+3)-(3(a+2))=0
We multiply parentheses
a^2+3a-(3(a+2))=0
We calculate terms in parentheses: -(3(a+2)), so:
3(a+2)
We multiply parentheses
3a+6
Back to the equation:
-(3a+6)
We get rid of parentheses
a^2+3a-3a-6=0
We add all the numbers together, and all the variables
a^2-6=0
a = 1; b = 0; c = -6;
Δ = b2-4ac
Δ = 02-4·1·(-6)
Δ = 24
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{24}=\sqrt{4*6}=\sqrt{4}*\sqrt{6}=2\sqrt{6}$
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{6}}{2*1}=\frac{0-2\sqrt{6}}{2} =-\frac{2\sqrt{6}}{2} =-\sqrt{6} $
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{6}}{2*1}=\frac{0+2\sqrt{6}}{2} =\frac{2\sqrt{6}}{2} =\sqrt{6} $

See similar equations:

| x-53-134=180 | | 1-x+7=20 | | 4x+1+24+x=180 | | 10+2x-19=x+20 | | 6+9u=2(u-11) | | 32xx=288 | | 3(2x-7)=5x+23 | | 4+2x-8=x+4 | | 5x+59=89 | | 1x-8=24 | | -5v+-13v=-14 | | 1x+17=13 | | c9c9=3 | | x3+3x2+25x+75=0 | | 9+6x=2(2+1) | | 14c−12c−c=7 | | 1x-11=23 | | 6(x-5)=4x-8 | | 6w^2+5w-14=0 | | 19x+22=174 | | 2/3x-3=14 | | 10x=3.91 | | 16z-14z=14 | | 4x/9=-8 | | 8+9u=2(u-11) | | 6y-4=-2y-2 | | 3/4g-9=4(g+1 | | v-7.97=6.1 | | 5x7=52 | | x-3+x-6=11 | | 3/2(6x-24)=18 | | x+87+146=90 |

Equations solver categories