a+5=(1/5)(15+5a)

Simple and best practice solution for a+5=(1/5)(15+5a) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for a+5=(1/5)(15+5a) equation:



a+5=(1/5)(15+5a)
We move all terms to the left:
a+5-((1/5)(15+5a))=0
Domain of the equation: 5)(15+5a))!=0
a∈R
We add all the numbers together, and all the variables
a-((+1/5)(5a+15))+5=0
We multiply parentheses ..
-((+5a^2+1/5*15))+a+5=0
We multiply all the terms by the denominator
-((+5a^2+1+a*5*15))+5*5*15))=0
We calculate terms in parentheses: -((+5a^2+1+a*5*15)), so:
(+5a^2+1+a*5*15)
We get rid of parentheses
5a^2+a*5*15+1
Wy multiply elements
5a^2+75a*1+1
Wy multiply elements
5a^2+75a+1
Back to the equation:
-(5a^2+75a+1)
We add all the numbers together, and all the variables
-(5a^2+75a+1)=0
We get rid of parentheses
-5a^2-75a-1=0
a = -5; b = -75; c = -1;
Δ = b2-4ac
Δ = -752-4·(-5)·(-1)
Δ = 5605
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-75)-\sqrt{5605}}{2*-5}=\frac{75-\sqrt{5605}}{-10} $
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-75)+\sqrt{5605}}{2*-5}=\frac{75+\sqrt{5605}}{-10} $

See similar equations:

| 3/5x+3=6 | | 18×x=126 | | g+20=8 | | (5.1)^x(5.1)0/(5.1)^-1=(5.1)^3 | | 8v-6=6(v+2) | | 3.5b-3.4=75.1 | | 9=11c | | P=60-0.25q | | 42=3(4x-2) | | 2(3w-5)=39 | | 6/f​ =2.5 | | y-29=-11 | | 18-4n=5n+58 | | -6(v+2)=5v-34 | | c-10=39 | | -5w+2(w-2)=8 | | 3(5x-20)=15x(x-20) | | 12=z-9 | | 9×x=126 | | 39=m+10 | | 7(5x+4)=133 | | 2x-(90x-)=180 | | 4(u+7)-6u=36 | | 3x+2=6×-118 | | 16=9x-6+7x | | sX4=20 | | 2x-(90x-)=12 | | -5x-6=6x+16 | | -5=2/17x | | 2-(2×x)=x+64 | | -8=-8y+4(y-5) | | 2x-12x(90-x)=12 |

Equations solver categories