a+a+a+a+1/2a=81

Simple and best practice solution for a+a+a+a+1/2a=81 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for a+a+a+a+1/2a=81 equation:



a+a+a+a+1/2a=81
We move all terms to the left:
a+a+a+a+1/2a-(81)=0
Domain of the equation: 2a!=0
a!=0/2
a!=0
a∈R
We add all the numbers together, and all the variables
4a+1/2a-81=0
We multiply all the terms by the denominator
4a*2a-81*2a+1=0
Wy multiply elements
8a^2-162a+1=0
a = 8; b = -162; c = +1;
Δ = b2-4ac
Δ = -1622-4·8·1
Δ = 26212
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{26212}=\sqrt{4*6553}=\sqrt{4}*\sqrt{6553}=2\sqrt{6553}$
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-162)-2\sqrt{6553}}{2*8}=\frac{162-2\sqrt{6553}}{16} $
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-162)+2\sqrt{6553}}{2*8}=\frac{162+2\sqrt{6553}}{16} $

See similar equations:

| 0.042x+4.819=0.030+4.183 | | 3x+3+6x=2x+24 | | 0.75x+5.283=0.050x+5.278 | | 4f=45 | | 6-4(3x-3)=-2 | | 3y^-11y+6=0 | | 0.07-0.01(1x+1)=-0.03(2-x) | | 16-4(2x-4)=-4 | | 2/3(3x-2)=4/5(2x-3)+36/16 | | 2x^-15x+27=0 | | 21=n=5 | | 7x-3=7(x+6$ | | 8(y-1)-y=2y-7 | | 10(x+3)-9x-4)=x-5+3 | | 7+2/5y=3/5y+4 | | -13+1=-4(x+2 | | 3(5x+7)=-13+19 | | 6-(2n-6)=7-3n | | 3(4+w)=2(6+w | | 7(n-4)-(2-3n)=9n | | 14=t-5+10 | | 0.2(x+30)-0.03(x-10)=1.2 | | -11+10p+100=4-5(2p+11) | | 12x+7-11x=8 | | y+217.46=598.07 | | 6u+24=-4u+12 | | 1/3(d-3)=5 | | 2(v-3)+2v=-2 | | 6w-5+8w-3=9w-24 | | 20=3p-2 | | 22=4(y-5)+2y | | 11y-8y-14=23.17 |

Equations solver categories