a-2/a+3-1=3/a+2

Simple and best practice solution for a-2/a+3-1=3/a+2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for a-2/a+3-1=3/a+2 equation:



a-2/a+3-1=3/a+2
We move all terms to the left:
a-2/a+3-1-(3/a+2)=0
Domain of the equation: a!=0
a∈R
Domain of the equation: a+2)!=0
a∈R
We add all the numbers together, and all the variables
a-2/a-(3/a+2)+2=0
We get rid of parentheses
a-2/a-3/a-2+2=0
We multiply all the terms by the denominator
a*a-2*a+2*a-2-3=0
We add all the numbers together, and all the variables
a*a-5=0
Wy multiply elements
a^2-5=0
a = 1; b = 0; c = -5;
Δ = b2-4ac
Δ = 02-4·1·(-5)
Δ = 20
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{20}=\sqrt{4*5}=\sqrt{4}*\sqrt{5}=2\sqrt{5}$
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{5}}{2*1}=\frac{0-2\sqrt{5}}{2} =-\frac{2\sqrt{5}}{2} =-\sqrt{5} $
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{5}}{2*1}=\frac{0+2\sqrt{5}}{2} =\frac{2\sqrt{5}}{2} =\sqrt{5} $

See similar equations:

| 38-x=82 | | 5x25+50=7x25 | | 2x=9.6^8 | | x=180-(3x=90) | | 3^x+4=27^x | | 5x-15x=20 | | 0.5x=1.2+1.4 | | 2x²×4x⁴=512 | | 5(t+4)=8 | | 2x+4|=|x-5| | | 8=2+3(t+4) | | -3(y+5)+12=-21 | | -6+u/5=-16 | | -5(3t-2)+9=3t-6 | | (5a+3)/4=7 | | y²-10y+21=0 | | 3(2x-3/4=3x+6 | | 12.5(r-1)=2(r-4)-6 | | 65=4b+5. | | 2t=124 | | 8f+150=6f+150 | | 10p(p+2)+3(p–3)=5 | | m+2m+3+3=3(m+2) | | (x-1)²-24=0 | | 5^7x-28=2^7x-28 | | 7x-4x+1=2 | | 77=3b+5 | | 15(x-9)+5(x-6)=2(x-12) | | (5x)x=128 | | x4=9. | | 6x+11=191 | | 5x+21=2x-12 |

Equations solver categories