If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a2+10a+17=0
We add all the numbers together, and all the variables
a^2+10a+17=0
a = 1; b = 10; c = +17;
Δ = b2-4ac
Δ = 102-4·1·17
Δ = 32
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{32}=\sqrt{16*2}=\sqrt{16}*\sqrt{2}=4\sqrt{2}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-4\sqrt{2}}{2*1}=\frac{-10-4\sqrt{2}}{2} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+4\sqrt{2}}{2*1}=\frac{-10+4\sqrt{2}}{2} $
| -4x+2x=18+16 | | -5x+3x=8-3 | | -12x+10x=12-3 | | -5x-3x=-7-4 | | -7x+8x=-2+8 | | -3x+8=2x-3 | | -4x-3x=-2x+16 | | 13x-8=10x=7 | | (2x+5)=(-4x+7) | | 3z-5+2z=2-5z | | 10+2x=62 | | 0.2(10-20x)=7x-20 | | 9s+29=180 | | (2t^2-3t-7)=(4t^2-6t+1) | | 4t+20=180 | | 3x^2-23x+120=0 | | 11-9-(-x)=14x+(-6x) | | 5x-7+4x-9=180 | | -3(3y-7)+5y=9 | | 38+3x=-17+8x | | 6x=7x+18 | | -4=-2/u | | 8x=2x-5 | | y+(5*5)=17 | | 4-12v=6 | | 2/3x-1=x-2/2 | | 6n-10=100 | | X2+20x-525=0 | | r2=3*(r+1) | | r2=3(r+1) | | 23x102=23*(100+2) | | -4(2x-6)-12=4 |