If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a2+122=132
We move all terms to the left:
a2+122-(132)=0
We add all the numbers together, and all the variables
a^2-10=0
a = 1; b = 0; c = -10;
Δ = b2-4ac
Δ = 02-4·1·(-10)
Δ = 40
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{40}=\sqrt{4*10}=\sqrt{4}*\sqrt{10}=2\sqrt{10}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{10}}{2*1}=\frac{0-2\sqrt{10}}{2} =-\frac{2\sqrt{10}}{2} =-\sqrt{10} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{10}}{2*1}=\frac{0+2\sqrt{10}}{2} =\frac{2\sqrt{10}}{2} =\sqrt{10} $
| 5x-4=1.5(5+20x) | | -3(-2w+8)-7w=5(w-3)-1 | | 4x-17=6x-45 | | 2x+10=55 | | 27+600x=8.25x | | -2n-10n+7=-2n+5 | | 8÷13=v÷21 | | 9x-6+58=90 | | -(m-9)=-2(m+1) | | 16x-4+58=90 | | (y/5)^2=9 | | .4y+.1y=-2.5 | | -2u+28=-4(u-3) | | 6a-2=-65 | | 6(y+6)=54 | | x+63=40 | | u-7.22=3.4 | | 6x=4.6x=60 | | 6(j+4)=96 | | 4/10x=-6/5 | | 4(h-4)+5=3h-6+h | | 36-5u=4u | | 36=4(v+7)-8v | | 23-4f=11 | | -72=-8n+16n+8 | | -36-3x=7(x-8) | | 20=40-4x | | -4(x-17)=-20 | | 14y=7y+14 | | K=3r/ | | 40-2x=5(1+8x)-7x | | k-42=56 |